LEADING AT THE EDGE
TECHNOLOGY AND MANUFACTURING DAY
10 nm Technology Leadership

Kaizad Mistry
Corporate Vice President, Technology and Manufacturing Group
Co-Director, Logic Technology Development
Intel Technology and Manufacturing Day 2017 occurs during Intel’s “Quiet Period,” before Intel announces its 2017 first quarter financial and operating results. Therefore, presenters will not be addressing first quarter information during this year's program.

Statements in this presentation that refer to forecasts, future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on management's expectations as of March 28, 2017, and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's earnings release dated January 26, 2017, which is included as an exhibit to Intel's Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Forms 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC's website at www.sec.gov.
• Intel’s 10 nm process technology has the world’s tightest transistor & metal pitches along with hyper scaling features for leadership density

• Intel’s 10 nm technology is a full generation ahead of other “10 nm” technologies

• Enhanced versions of Intel 10 nm provide improved power/performance within the 10 nm process family

• Hyper scaling extracts the full value of multi-patterning schemes and allows Intel to continue the benefits of Moore’s Law economics

Source: Amalgamation of analyst data and Intel analysis, based upon current expectations and available information.
AGENDA

- Intel 10 nm Features
- Intel 10 nm Hyper Scaling
- Enhanced Versions of Intel 10 nm
- Hyper Scaling Redux
10 nm Hyper Scaling

<table>
<thead>
<tr>
<th></th>
<th>Fin Pitch</th>
<th>Min Metal Pitch</th>
<th>Cell Height</th>
<th>Gate Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 nm</td>
<td>42 nm</td>
<td>52 nm</td>
<td>399 nm</td>
<td>70 nm</td>
</tr>
<tr>
<td></td>
<td>34 nm (.81x)</td>
<td>36 nm (.69x)</td>
<td>272 nm (.68x)</td>
<td>54 nm (.78x)</td>
</tr>
<tr>
<td>10 nm</td>
<td>14 nm</td>
<td>14 nm</td>
<td>14 nm</td>
<td>14 nm</td>
</tr>
<tr>
<td></td>
<td>10 nm</td>
<td>10 nm</td>
<td>10 nm</td>
<td>10 nm</td>
</tr>
</tbody>
</table>

10 nm features aggressive pitch scaling - world's first Self-Aligned Quad Patterning

Source: Intel
10 nm Hyper Scaling

<table>
<thead>
<tr>
<th>Fin Pitch</th>
<th>Min Metal Pitch</th>
<th>Cell Height</th>
<th>Gate Pitch</th>
<th>Dummy Gate</th>
<th>Gate Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 nm</td>
<td>52 nm</td>
<td>399 nm</td>
<td>70 nm</td>
<td>Double</td>
<td>14 nm</td>
</tr>
<tr>
<td>34 nm</td>
<td>36 nm</td>
<td>272 nm</td>
<td>54 nm</td>
<td>Single</td>
<td>10 nm</td>
</tr>
<tr>
<td>.81x</td>
<td>.69x</td>
<td>.68x</td>
<td>.78x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 nm aggressive scaling & new features deliver 2.7x transistor density improvement

Source: Intel
Intel 10 nm hyper scaling features result in Transistor Density above 100MTr/mm²

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
3rd Generation FinFETs

10 nm Fins are ~25% taller and ~25% more closely spaced than 14 nm
Intel’s 10 nm technology features a Fin Pitch of 34 nm, Fin Height of 53 nm
Intel's 10 nm technology features 54 nm gate pitch

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Intel 10 nm Gate Pitch is the tightest in the industry

Source: Amalgamation of analyst data and Intel analysis. 2017-2020 are estimates based upon current expectations and available information.
Intel 10 nm technology features a minimum metal pitch of 36 nm

World’s first Self-Aligned Quad Patterning

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Intel 10 nm technology has the tightest minimum metal pitch in the industry.

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Contact over active gate is a revolutionary feature for another ~10% area scaling.
Process innovations enable denser single dummy gate at cell borders
Single dummy gate at cell borders provides ~20% effective area scaling benefit.
AGENDA

- Intel 10 nm Features
- Intel 10 nm Hyper Scaling
- Enhanced Versions of Intel 10 nm
- Hyper Scaling Redux
Fin pitch and metal pitch scaling allow cell height to scale 0.68x from 14 nm
Cell height and gate pitch scaling provides traditional area reduction of ~0.5x
Intel 10 nm hyper scaling features further improve area scaling to 0.37x.
10 nm hyper scaling features provides better-than-normal 0.37x logic area scaling.

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Intel 10 nm hyper scaling features provide ~2.7x transistor density improvement

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Hyper scaling maintains the rate of Moore’s Law density scaling

Source: Intel. 2017-2020 are estimates based upon current expectations and available information.
Intel 10 nm is a full generation ahead of other “10 nm” technologies
10 nm offers a range of SRAM cells for density and power/performance.

SRAM cell area scaled ~0.6x from 14 nm.

Source: Intel
Hyper scaling delivers better microprocessor die area scaling than the normal trend
AGENDA

- Intel 10 nm Features
- Intel 10 nm Hyper Scaling
- Enhanced Versions of Intel 10 nm
- Hyper Scaling Redux
10 nm enhancements improve performance and extend technology life.

Source: Intel. 2017-2021 are estimates based upon current expectations and available information.
10 nm technology continues trend of power/performance improvements

Source: Intel estimates based upon current expectations and available information.
10++ enhancements offer improved power/performance within 10 nm generation.
TECHNOLOGY ENHANCEMENTS

High Q Inductors

High Res Substrates

High Voltage FinFETs

Precision Resistors

Low Cost Dense High Perf
Interconnect Options

Intel's 10 nm technology family has features for a broad range of products

Source: Intel
AGENDA

- Intel 10 nm Features
- Intel 10 nm Hyper Scaling
- Enhanced Versions of Intel 10 nm
- Hyper Scaling Redux
HYPER SCALING

- Hyper scaling allows Intel to continue the economics of Moore’s Law
 - More than 2X logic transistor density increase but with longer than 2 year cadence
 - Same rate of transistor density increase as traditional Moore’s Law scaling
 - Same rate of Cost per Transistor improvement as traditional Moore’s Law scaling
 - Power/performance enhancements within each process node

- Why hyper scaling?
 - Multi-pass patterning adds to the cost of lithography
 - Hyper scaling extracts the full cost per transistor benefit of advanced patterning schemes

- Hyper scaling would not be possible without Self-Aligned Dual and Self-Aligned Quad Patterning along with other 10 nm hyper scaling innovations
Hyper scaling allows the economics of Moore’s Law to continue

Source: Intel estimates based upon current expectations and available information.
CONCLUSIONS

- Intel’s 10 nm process technology has the world’s tightest transistor & metal pitches along with hyper scaling features for leadership density.

- Intel’s 10 nm technology is a full generation ahead of other “10 nm” technologies.

- Enhanced versions of Intel 10 nm provide improved power/performance within the 10 nm process family.

- Intel’s 10nm process technology is on track to commence manufacturing in 2H’17.

- Hyper scaling extracts the full value of multi-patterning schemes and allows Intel to continue the economic benefits of Moore’s Law.

Source: Amalgamation of analyst data and Intel analysis, based upon current expectations and available information.