INTEL® XEON® SCALABLE PLATFORM

THE INDUSTRY’S BIGGEST PLATFORM ADVANCEMENT IN A DECADE
BUSINESS OPPORTUNITY FUELED BY DATA CENTER INNOVATION

CLOUD ECONOMICS

Data Center Growth Drivers

18% CAGR from 2017-2020

INTELLIGENT DATA PRACTICES

UNLEASH ANALYTICS, AI & HPC TO ACCELERATE INSIGHTS

AI is the fastest growing datacenter workload

114% NFV/SDN CAGR from 2014-2020

1. Source: IDC Q4’16 Cloud Infrastructure Tracker
2. Source: Technology Business Research, Sept 2015
3. Source: Amalgamation of Intel financials, analyst data and Intel analysis, Intel revenue includes FPGAs.
INTEL® XEON® SCALABLE PLATFORM

The foundation of Data Center Innovation: Agile & Trusted Infrastructure

PERFORMANCE
Pervasive through compute, storage, and network

SECURITY
Pervasive data security with near zero performance overhead

AGILITY
Rapid service delivery

DELIVERS 1.65X AVERAGE PERFORMANCE BOOST OVER PRIOR GENERATION

1 Up to 1.65x Geomean based on Normalized Generational Performance going from Intel® Xeon® processor E5-26xx v4 to Intel® Xeon® Scalable processor (estimated based on Intel internal testing of OLTP Brokerage, SAP SD 2-Tier, HammerDB, Server-side Java, SPEC®int_rate_base2006, SPEC®fp_rate_base2006, Server Virtualization, STREAM® triad, LAMMPS, DPDK L3 Packet Forwarding, Black-Scholes, Intel Distribution for LINPACK).

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.
A GLIMPSE INSIDE THE INTEL® XEON® SCALABLE PLATFORM

INTEGRATED OPTIONS

Fabric
Intel® Omni-Path Architecture

Networking
Intel® Ethernet

Accelerators
Intel® QuickAssist
Intel® AVX-512

SSDs
Intel® Optane™ SSD
DC P4800X

Complementary
Intel® FPGA

Workload optimized frameworks & telemetry
(e.g. Caffe*, Intel® DAAL, Intel® MKL, DPDK, SNAP*, SPDK)

ADVANCING VIRTUALLY EVERY ASPECT: BRAND NEW CORE, CACHE, ON-DIE INTERCONNECTS, MEMORY CONTROLLER & MORE

Performance
Security
Agility

Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Intel® Math Kernel Library (Intel® MKL)
Intel® Volume Management Device (Intel® VMD)
Storage Performance Development Kit (SPDK)
Intel® Data Analytics Acceleration Library (Intel® DAAL)

Data Plane Development Kit (DPDK)
Intel® Resource Director Technology (Intel® RDT)
MAXIMIZES PERFORMANCE

Enables consistent, low latencies

Optimized for data sharing and memory access between all CPU cores/threads for ideal memory bandwidth and capacity

Data flows scale efficiently for 2, 4 & 8+ socket configurations

Designed for modern virtualized and hybrid cloud implementations

Design for Next-Generation Data Centers
<table>
<thead>
<tr>
<th>Cloud</th>
<th>AI & Analytics</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.74X</td>
<td>1.47X</td>
<td>2.21X</td>
</tr>
<tr>
<td>click-through-rate¹</td>
<td>in-memory analytics⁵</td>
<td>business support system¹¹</td>
</tr>
<tr>
<td>1.62X</td>
<td>1.68X</td>
<td>1.9X</td>
</tr>
<tr>
<td>enterprise cloud applications²</td>
<td>enterprise risk management⁷</td>
<td>HEVC video encoding¹²</td>
</tr>
<tr>
<td>1.63X</td>
<td>1.72X</td>
<td>1.5X</td>
</tr>
<tr>
<td>OLTP database³</td>
<td>molecular dynamics⁶</td>
<td>video transcoding¹³</td>
</tr>
<tr>
<td>1.5X</td>
<td></td>
<td>1.64X</td>
</tr>
<tr>
<td>cloud monitoring⁴</td>
<td></td>
<td>packet inspection¹⁴</td>
</tr>
<tr>
<td>1.72X</td>
<td></td>
<td>1.67X</td>
</tr>
<tr>
<td>video stitching⁵</td>
<td></td>
<td>routing¹⁵</td>
</tr>
</tbody>
</table>

Other names and brands may be claimed as the property of others. Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSMark and MobileMark, are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assign you in fully evaluating your contemplated purchases, including the performance of that product with other products. For more complete information visit http://www.intel.com/Performance.
CONVERGED “HIGHLY INTEGRATED” PLATFORM FOR THE NETWORK

APPLICATION & ARCHITECTURAL LEVEL PERFORMANCE COMPARISON

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance/datacenter.
INTEL® XEON® PLATINUM AND INTEL® OPTANE™ SSDS FOR STORAGE INFRASTRUCTURE

- Intel Optane SSD P4800 Series: High performance, low latency storage
- Intel® Volume Management Device: Hot-swap of drives with standardized LED management
- Software tools for optimized storage
 - Intel® Intelligent Storage Acceleration Library (ISA-L)
 - Intel® Storage Performance Development Kit (SPDK)

2X PERFORMANCE INCREASE
VS PRIOR GENERATION

Business impact
✓ Faster data analytics results
✓ More complex analyses
✓ Deeper data insights

1 2x claim based on SAS Business Analytics: SAS 9.4 m4 application running the 30 session SAS Mixed Analytics workload. OS: CentOS 7.2 kernel 3.10.0. Testing by Intel and SAS May 2017. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. *Other names and brands may be claimed as the property of others.
INTEL® XEON® SCALABLE PROCESSORS FOR AI

Scalable performance for widest variety of AI & other datacenter workloads – including deep learning

BUILT-IN ROI
Begin your AI journey today using existing, familiar infrastructure

POTENT PERFORMANCE
Train in days HOURS with up to 113X² perf vs. Intel Xeon processor E5 v3 (2.2x excluding optimized SW¹)

PRODUCTION-READY
Robust support for full range of AI deployments

MOST AGILE AI PLATFORM

¹²Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

Source: Intel measured as of November 2016. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. See slide 15 for configuration details.
INTEL® XEON® SCALABLE PROCESSORS
THE FOUNDATION FOR AGILE, SECURE, WORKLOAD-OPTIMIZED HYBRID CLOUD

BEST

UP TO 28 CORES

- **UP TO 2, 4 & 8 SOCKET SUPPORT**
- **UP TO 3 UPI LINKS**
- **DDR4 2666 MHz WITH UP TO 1.5 TB TOPLINE MEMORY CHANNEL BANDWIDTH**
- **HIGHEST ACCELERATOR THROUGHPUT**

MAINSTREAM

GOOD

UP TO 22 CORES

- **2 & 4 SOCKET SUPPORT**
- **UP TO 3 UPI LINKS**

EFFICIENT

ENTRY

ENTRY PERFORMANCE, PRICE SENSITIVE

LIGHT TASKS

ENTRY

SCALABLE PERFORMANCE AT LOW POWER STANDARD RAS

MODERATE TASKS

HIGHEST ACCELERATOR THROUGHPUT

ADVANCED RELIABILITY, AVAILABILITY AND SERVICEABILITY

INTEL® TURBO BOOST TECHNOLOGY AND INTEL® HYPER-THREADING TECHNOLOGY FOR MODERATE WORKLOADS

ENTRY PERFORMANCE, PRICE SENSITIVE FOR LIGHT WORKLOADS

SCALABLE PERFORMANCE HARDWARE-ENHANCED SECURITY STANDARD RAS

HIGHEST ACCELERATOR THROUGHPUT

ADVANCED RELIABILITY, AVAILABILITY AND SERVICEABILITY

INTEL® TURBO BOOST TECHNOLOGY AND INTEL® HYPER-THREADING TECHNOLOGY FOR MODERATE WORKLOADS

ENTRY PERFORMANCE, PRICE SENSITIVE FOR LIGHT WORKLOADS
THE INTEL® XEON® SCALABLE DATA CENTER ADVANTAGE

PROVEN PERFORMANCE AND INNOVATION

- Up to 1.65X average generational gains\(^1\)
- Up to 8.2X boost in HPC over installed base\(^2\)

ARCHITECTED FOR THE DATA CENTER

- Single-die implementation maximizes performance and reduces latency
- Workload optimized acceleration

UNMATCHED GLOBAL ECOSYSTEM

- Intel Select Solutions
- Decades of investment in software, validation, optimizations and security
- Intel® Architecture advantage: Fully interoperable with other Intel virtualized server pools and products

\(^1\)Up to 1.65X Geomean based on Normalized Generational Performance going from Intel® Xeon® processor E5-26xx v4 to Intel® Xeon® Scalable processor (estimated based on Intel internal testing of OLTP Brokerage, SAP SD Tier, HammerDB, Server-side Java, SPEC_int_rate_base2006, SPEC_fp_rate_base2006, Server Virtualization, STREAM triad, LAMMPS, DPDK L3 Packet Forwarding, Black-Scholes, Intel Distribution for LINPACK Benchmark).

\(^2\)Up to 8.2X claim based on Intel® Distribution for LINPACK Benchmark: 1-Node, 2 x Intel® Xeon® Processor E5-2690 on Intel® Server Board S2600CP2 with 32 GB Total Memory on Red Hat Enterprise Linux* 6.0 (Santiago) kernel version 2.6.32-504.el6.x86_64 using Intel® Distribution for LINPACK Benchmark using 56000 problem size. Score: 366.0 GFLOPS/s vs. 1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Purley-EP (Lewisburg) with 192 GB Total Memory on Ubuntu 17.04 using MKL 2017 Update 2. Data Source: Request Number: 2535, Benchmark: Intel® Distribution for LINPACK Benchmark, Score: 3007.8 GFLOPS/s Higher is better. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. 2 Source as of June 2017: results estimated or published at www.spec.org. For more complete information visit www.intel.com/benchmarks. Configuration: Refer to Performance Benchmark Disclosure slide. Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. *Other names and brands may be claimed as the property of others.
Disclosures

Statements in this presentation that refer to Business Outlook, forecast, future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “goals,” “plans,” “believes,” “seeks,” “estimates,” “continues,” “may,” “will,” “would,” “should,” “could,” and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on management’s expectations as of February 9, 2017 and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company’s expectations are set in Intel’s earnings release dated January 26, 2017, which is included as an exhibit to Intel’s Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent reports on Forms 10-K and 10-Q. Copies of Intel’s Form 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC’s website at www.sec.gov.

No computer system can be absolutely secure. Intel technologies may require enabled hardware, specific software, or services activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Performance varies depending on hardware, software, and system configuration. For more information, visit http://www.intel.com/go/turbo

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel, the Intel logo, Intel Xeon, and Intel Optane are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Copyright 2017 Intel Corporation
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Software and workloads used in performance tests may have been optimized for specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Results are based on internal testing and are provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Up to 4.2x more VMs based on virtualization consolidation workload: Based on Intel® internal estimates 1-Node, 2 x Intel® Xeon® Processor E5-2690 on Romley-EP with 256 GB Total Memory on VMware ESXi® 6.0 GA using Guest OS RHEL6.4, glassfish3 1.2.2, postgresql9.2. Data Source: Request Number: 1718, Benchmark: server virtualization workload, Score: 377.6 @ 21 VMs Higher is better vs. 1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Wolf Pass G8X with 768 GB Total Memory on VMware ESXi6.0 USB QA using Guest VM’s utilize RHEL 6.6bit OS. Data Source: Request Number: 2563, Benchmark: server virtualization workload, Score: 1580 @ 30 VMs Higher is better.

Up to 8.2x claim based on Intel® Distribution for LINPACK Benchmark: 1-Node, 2 x Intel® Xeon® Processor E5-2690 on Intel® Server Board S2600CP2 with 32 GB Total Memory on Red Hat Enterprise Linux® 6.0 (Santiago) kernel version 2.6.32-504.el6.x86_64, using Intel® Distribution for LINPACK Benchmark using 56000 problem size. Score: 366.0 GFLOPS/s vs. 1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Purley-EP (Lisburg) with 192 GB Total Memory on Ubuntu 17.04 using MKL 2017 Update 2. Data Source: Request Number: 2535, Benchmark: Intel® Distribution for LINPACK Benchmark, Score: 3007.8 GFLOPS/s is Higher is better.

Up to 1.6x Geomaran based on Normalized Generational Performance going from Intel® Xeon® processor E5-26xx v4 to Intel® Xeon® Scalable processor (estimated based on Intel internal testing of OLTP Brokerage, SAP SD 2-Tier, HammerDB, Server-side Jave, SPECCint_rate_base2006, SPECCfp_rate_base2006, Server Virtualization, STREAM® triad, LAMMPS, DPDK L3 Packet Forwarding, Black-Scholes, Intel Distribution for LINPACK

Up to 2.2x and 113x AI performance. Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.5GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine,compact,1,0', OMP_NUM_THREADS=56, CPU scaling governor set to “performance” via cpufreq. 256GB DDR4-2133 ECC RAM, CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. OS drive: Seagate® ST2000NX0253 2TB 2.5" Internal Hard Drive. Performance measured with: Environment variables: KMP_AFFINITY='granularity=finer,compact,1.0', OMP_NUM_THREADS=36, CPU Freq set with cpufreq-frequency-set -d 2.3G -g performance. Intel Caffe: (http://github.com/intel/caffe), revision b0ef3236528a2c7d2988f249d347d5fdae831236. Inference measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), GCC 4.8.5, MKML version 2017.0.2.20170110. BVLC-Caffe: https://github.com/BVLC/caffe, Inference & Training measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. BVLC Café (http://github.com/BVLC/caffe), revision 91b69d280f5233acff62954c498c8dbc2064e7475 (commit date 9/14/2017). BLAS, atlas ver. 3.10.1. Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.5GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25mm, MLC). Performance measured with: Environment variables: KMP_AFFINITY='granularity=finer,compact,1.0', OMP_NUM_THREADS=56, CPU Freq set with cpufreq-frequency-set -d 2.5G -g performance. Intel Caffe: (http://github.com/intel/caffe), revision 0bed2c3f8252c7d26a382d943a347df572d7431236. Inference measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), GCC 4.8.5, MKML version 2017.0.2.20170110. BVLC-Caffe: https://github.com/BVLC/caffe, Inference & Training measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. BVLC Café (http://github.com/BVLC/caffe), revision 91b69d280f5233acff62954c498c8dbc2064e7475 (commit date 9/14/2017), BLAS, atlas ver. 3.10.1. Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.5GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25mm, MLC). Performance measured with: Environment variables: KMP_AFFINITY='granularity=finer,compact,1.0', OMP_NUM_THREADS=56, CPU Freq set with cpufreq-frequency-set -d 2.3G -g performance. Intel Caffe: (http://github.com/intel/caffe), revision b0ef3236528a2c7d2988f249d347d5fdae831236. Inference measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), GCC 4.8.5, MKML version 2017.0.2.20170110. BVLC-Caffe: https://github.com/BVLC/caffe, Inference & Training measured with “caffe time-board only” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. BVLC Café (http://github.com/BVLC/caffe), revision 91b69d280f5233acff62954c498c8dbc2064e7475 (commit date 9/14/2017), BLAS, atlas ver. 3.10.1.
Intel® Xeon® Platinum processor “Best Performance, Hardware-Enhanced Security, Outstanding Business Agility”: Comparing Intel® Xeon® Platinum processor vs. Intel® Xeon® Gold processor including core count, socket support and other platform capabilities. Results have been estimated based on internal Intel analysis and are provided for informational purposes only.

Intel® Xeon® Gold processor “Great Performance, Fast Memory, More Interconnect/Accelerator Engines, Advanced Reliability”: Comparing Intel® Xeon® Gold processor vs. Intel® Xeon® Silver processor including core count, socket support and other platform capabilities. Results have been estimated based on internal Intel analysis and are provided for informational purposes only.

Intel® Xeon® Silver processor “Efficient Performance”: Comparing Intel® Xeon® Silver processor vs. Intel® Xeon® Bronze processor including core count, socket support and other platform capabilities. Results have been estimated based on internal Intel analysis and are provided for informational purposes only.

Intel® Xeon® Bronze processor “Entry Performance”: Comparing Intel® Xeon® Bronze processor vs. Intel® Xeon® processor E3-1200 v6 processor including core count, socket support and other platform capabilities. Results have been estimated based on internal Intel analysis and are provided for informational purposes only.