The Future Begins Here
Quantum Computing: A Scalable, Systems Approach
Anne Matsuura
Director of Quantum Computing Architecture
A Reality Check

- If we had tens of thousands of qubits today... what could we do with quantum computing?
- Hint: What applications could you run on a computer with just a processor?
Quantum Computing: Key Concepts

Superposition
- Classical Physics: Heads OR Tails
- Quantum Physics: Heads AND Tails

Entanglement
- N Quantum Bits or Qubits = 2^N States
- 1) 2) 3) 4)

Fragility
- Observation or noise causes loss of information
Changing the World

TIME

“Quantum Will Change Everything” Feb 16, 2014

Climate Modeling

Travel & Logistics

Cryptography

Drug Design

Financial Modeling
Key system challenges for Quantum Practicality

- New execution model
- Error mitigation & resilience
- Scalability
- Interconnect complexity
- Qubit device design
Qubit Control Processor

- Feeds correct instructions to run algorithm
- Sends info about what pulses to generate/timing
- Generates the pulses to manipulate the qubits

Quantum Runtime

- instruction
- instruction

Qubit Control Processor

- Micro-ops
- Micro-ops

Control Electronics
Quantum Compiler

Compiler takes algorithm and maps & schedules to qubits
Qubit Mapping & Scheduling

3 x 3 square grid – independent control

Logical Schedule

- Hadamard q0
- Move q1, I0
- ControlledZ q1, q0
- Move q1, M1
- SWAP q1, q0
- Move q2, I1
- ControlledZ q2, q1
- Move q2, M2
Noise-Resilient Quantum Algorithms

- Hybrid quantum-classical algorithms are noise-resilient
- Full computer system needs to have hybrid quantum-classical versatility
Materials Design - Application Area

- High-value, real-world use case for quantum computing
- Complex materials simulations - intractable for classical computers
- Workload to understand scaling, resilience and assess performance

High Temperature Superconductivity
Impact of Connectivity on Algorithm Performance

Qubit Connectivity

- Linear
- Ladder
- Grid

Increasing Difficulty to Build

Quantum Fourier Transform

Problem Size (Qubits)

Fidelity

Holmes et al, Quantum Sci Tech 5 (2020), 025009
Putting it All Together

<table>
<thead>
<tr>
<th>Application Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler</td>
</tr>
<tr>
<td>Runtime</td>
</tr>
<tr>
<td>Qubit Control Processor</td>
</tr>
<tr>
<td>Control Electronics</td>
</tr>
<tr>
<td>Qubit Chip</td>
</tr>
</tbody>
</table>

Q-NEXT brings together nearly 100 world-class researchers from three national laboratories, 10 universities and 10 leading U.S. technology companies with the single goal of developing the science and technology to control and distribute quantum information.
Summary

- Quantum computers promise dramatic increase in performance
- Intel research focus:
 - Scalability to thousands to millions of qubits
 - All layers of the compute stack
 - Workload-driven co-design
 - Useful Applications
- Quantum Practicality: Large scale, commercial quantum computing
Legal Disclaimers

- Intel provides these materials as-is, with no express or implied warranties.
- All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change without notice.
- Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at http://intel.com
- Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.
- Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.

© Intel Corporation 2020