Intel’s New Chip to Advance Silicon Spin Qubit Research for Quantum Computing

Futuristic computer chip with glowing circuits and neon accents, set against a purple backdrop. The surface features parallel lines and illuminated wavy patterns beneath them, creating a dynamic sense of technology and innovation.

A schematic representation shows an electron under 12-qubit quantum dot gates. Fabricated on 300-millimeter wafers, Tunnel Falls leverages Intel’s most advanced transistor fabrication capabilities, such as extreme ultraviolet lithography (EUV) and advanced materials processing techniques. This makes the chip a single electron transistor and allows Intel to fabricate Tunnel Falls with few changes to a standard complementary metal oxide semiconductor (CMOS) logic processing line. (Credit: Intel Corporation)

Intel makes new quantum chip available to university and federal research labs to grow the quantum computing research community.

Download all images (ZIP, 25 MB)

​What’s New: Today, Intel announced the release of its newest quantum research chip, Tunnel Falls, a 12-qubit silicon chip, and it is making the chip available to the quantum research community. In addition, Intel is collaborating with the Laboratory for Physical Sciences (LPS) at the University of Maryland, College Park’s Qubit Collaboratory (LQC), a national-level Quantum Information Sciences (QIS) Research Center, to advance quantum computing research.

“Tunnel Falls is Intel’s most advanced silicon spin qubit chip to date and draws upon the company’s decades of transistor design and manufacturing expertise. The release of the new chip is the next step in Intel’s long-term strategy to build a full-stack commercial quantum computing system. While there are still fundamental questions and challenges that must be solved along the path to a fault-tolerant quantum computer, the academic community can now explore this technology and accelerate research development.”

–Jim Clarke, director of Quantum Hardware, Intel

Why It Matters: Currently, academic institutions don’t have high-volume manufacturing fabrication equipment like Intel. With Tunnel Falls, researchers can immediately begin working on experiments and research instead of trying to fabricate their own devices. As a result, a wider range of experiments become possible, including learning more about the fundamentals of qubits and quantum dots and developing new techniques for working with devices with multiple qubits.

To further address this, Intel is collaborating with LQC as part of the Qubits for Computing Foundry (QCF) program through the U.S. Army Research Office to provide Intel’s new quantum chip to research laboratories. The collaboration with LQC will help democratize silicon spin qubits by enabling researchers to gain hands-on experience working with scaled arrays of these qubits. The initiative aims to strengthen workforce development, open the doors to new quantum research and grow the overall quantum ecosystem.

The first quantum labs to participate in the program include LPS, Sandia National Laboratories, the University of Rochester, and the University of Wisconsin-Madison. LQC will work alongside Intel to make Tunnel Falls available to additional universities and research labs. The information gathered from these experiments will be shared with the community to advance quantum research and to help Intel improve qubit performance and scalability.

“The LPS Qubit Collaboratory, in partnership with the Army Research Office, seeks to tackle the hard challenges facing qubit development and develop the next generation of scientists who will create the qubits of tomorrow,” said Charles Tahan, chief of Quantum Information Science, LPS. “Intel’s participation is a major milestone to democratizing the exploration of spin qubits and their promise for quantum information processing and exemplifies LQC’s mission to bring industry, academia, national labs, and government together.”

Dr. Dwight Luhman, distinguished member of Technical Staff at Sandia National Laboratories, said, “Sandia National Laboratories is excited to be a recipient of the Tunnel Falls chip. The device is a flexible platform enabling quantum researchers at Sandia to directly compare different qubit encodings and develop new qubit operation modes, which was not possible for us previously. This level of sophistication allows us to innovate novel quantum operations and algorithms in the multi-qubit regime and accelerate our learning rate in silicon-based quantum systems. The anticipated reliability of Tunnel Falls will also allow Sandia to rapidly onboard and train new staff working in silicon qubit technologies.“

Mark A. Eriksson, department chair and John Bardeen Professor of Physics, Department of Physics, University of Wisconsin-Madison, said, “UW-Madison researchers, with two decades of investment in the development of silicon qubits, are very excited to partner in the launch of the LQC. The opportunity for students to work with industrial devices, which benefit from Intel’s microelectronics expertise and infrastructure, opens important opportunities both for technical advances and for education and workforce development.”

Intel Introduces Tunnel Falls Silicon Qubit Research Chip

About Tunnel Falls: Tunnel Falls is Intel’s first silicon spin qubit device released to the research community. Fabricated on 300-millimeter wafers in the D1 fabrication facility, the 12-qubit device leverages Intel’s most advanced transistor industrial fabrication capabilities, such as extreme ultraviolet lithography (EUV) and gate and contact processing techniques. In silicon spin qubits, information (the 0/1) is encoded in the spin (up/down) of a single electron. Each qubit device is essentially a single electron transistor, which allows Intel to fabricate it using a similar flow to that used in a standard complementary metal oxide semiconductor (CMOS) logic processing line.

Intel believes silicon spin qubits are superior to other qubit technologies because of their synergy with leading-edge transistors. Being the size of a transistor, they are up to 1 million times smaller than other qubit types measuring approximately 50 nanometers by 50 nanometers, potentially allowing for efficient scaling. According to Nature Electronics, “Silicon may be the platform with the greatest potential to deliver scaled-up quantum computing.”

At the same time, utilizing advanced CMOS fabrication lines allows Intel to use innovative process control techniques to enable yield and performance. For example, the Tunnel Falls 12 qubit device has a 95% yield rate across the wafer and voltage uniformity similar to a CMOS logic process, and each wafer provides over 24,000 quantum dot devices. These 12-dot chips can form between four to 12 qubits that can be isolated and used in operations simultaneously depending on how the university or lab operates its systems.

What’s Next: Intel will continuously work to improve the performance of Tunnel Falls and integrate it into its full quantum stack with the Intel Quantum Software Development Kit (SDK). In addition, Intel is already developing its next-generation quantum chip based on Tunnel Falls; it is expected to be released in 2024. In the future, Intel plans to partner with additional research institutions globally to build the quantum ecosystem.

Quantum Computing Laboratory in Oregon (B-Roll)

Download video: "Quantum Computing Laboratory in Oregon (B-Roll)"

More Context: Intel Labs Quantum Computing Backgrounder | Intel Labs (Press Kit)

Intel Customer Stories: Intel Customer Spotlight on Intel.com | Customer Stories on Intel Newsroom